CSE525 Lec12 Graph DP (suntider pati)
 000

Single source single dea.
Single-source (s) to All-target Shortest-Path

$$
|v|=n \quad|E|=m
$$

Memo: 2Darray $n \times m$ all edges $n \times(n-1)$
fill column wise
Define function $f(t, k) . f(t, k)=$ shortest-path dist. from s to t using at most k edges. shorted r path $s \sim_{\sim}^{s p(s, t)} t$
Case analysis of any such path: (cases should depend upon k) ?? on the length's of $S P(S, t)$
(- The path may contain $<=k-1$ edges. In that case, $f(t, k)=? ? f(t, k-1)$

- The path actually contains k edges. In that case, $\mathrm{f}(\mathrm{t}, \mathrm{k})=$?? Base case: $f(t, 1)=\left\{\begin{array}{l}t=s, 0\end{array}\right.$
Time and space complexity? $W(s, t)$
\qquad S \#edges $\leq n-1$

Time: $O\left(n^{2} \times n\right)$
P mud be $\left\{\begin{array}{l}P \text { must be shortest for } V \text { mit } \\ p \text { uses } K-1\end{array}\right.$ the shorter path
This is Shimbel-Ford-Bellman's algorithm. from s to t wing $S k-1$
No theoretically-better method is known to solve SSSP.
$\omega\left(\mathrm{t}_{\mathrm{t}}\right)=0$

$$
f(t, k)=\min _{u \in N(t)}\{w(u, t)+f(u, k-1)\}
$$

All-Pairs Shortest-Path
$W(S, t)=\infty$ if no edge

Goal: Compute distance matrix $\mathrm{D}[\mathrm{u}, \mathrm{v}]=$ shortest path distance from $\mathrm{u} \sim \mathrm{v}$

$$
\forall u, v \quad \operatorname{Dist}(u, v)=g(u, v, n-1)
$$

$\mathrm{g}(\mathrm{s}, \mathrm{t}, \mathrm{k})=$ shortest-path dist. from s to t using at most k edges Time comply. :- $O\left(n^{3} \times n\right)=0\left(w^{n}\right)$

- What is $g(0,4,1)=? \infty$
Memo: 3d array

$$
n \times n \times(n-1)
$$

- What is $g(0,4,2)=$? 60 to fill $g(j, k)$, need $g\left(; j_{k}\right)$

$$
\begin{aligned}
& \text { What is } g(0,4,3)=\text { ? } \quad 60 \\
& g(s, t, k)=\min _{u \in V}\{g(s, u, k-1)+w(u, t)\} \\
& s \sim \sim_{u t} \text { or } u \in N(t) \\
& g(s, t, 1)=w(s, t)
\end{aligned}
$$

Faster APSP $=[\min (5,13)=5$

$\mathrm{g}(\mathrm{s}, \mathrm{t}, \mathrm{k})=$ dist. from $\mathrm{s} \sim \mathrm{t}$ using $<=\mathrm{k}$ edges $\forall k=0 \cdots n-1$

Define V x V matrix $H_{k}[u, v]=\mathrm{g}(\mathrm{u}, \mathrm{v}, \mathrm{k})$
$H_{0} H_{1} H_{2}$..
Base case: $H_{j}^{\varphi}=W \Rightarrow g(s, t, 1)$
Compute $H_{2}, \ldots, H_{(n-1)}[z, v]$

Define binary operation on matrices: A \# B
$(A \# B)[u, v]=\min _{w_{2}=1 \ldots \eta}\{A(u, w)+B(w, v)\}$
Ex. Show \# is associative.
((A \# A) \# A) \# A) = A \# A \# A \# A
$=((\mathrm{A} \# \mathrm{~A}) \#(\mathrm{~A} \# \mathrm{~A}))$
$H_{k}[u, v]=\min _{z}\left\{H_{k-1}[u, z]+W[z, v]\right\} . \therefore H_{k}=H_{k-1} \# H_{1}$
So, $\mathrm{H}_{\mathrm{k}}=\mathrm{H}_{\mathrm{k}-1}$ \# $\mathrm{H}_{1}=\left(\left(\mathrm{H}_{\mathrm{k}-2}\right.\right.$ \# W) \# W) $=\mathrm{W}$ \# W \# W \# W \# W \# W \# ... \# W

$$
\omega \text {, compute } \omega^{2}=\sharp \omega \text {, computer }(\omega \sharp \omega) \nsubseteq(\omega \sharp \omega), k
$$

Distance matrix $\left.D=H_{(n-11)}\right) H_{(n+1)}, H_{(n+1)}, H_{(n+2)}$ $b=2\left\lceil l_{2} x\right\rceil$
How to compute $\mathrm{H}_{1} \# \mathrm{H}, \#$... \# H (how many times?)

$$
W \rightarrow W^{2} \rightarrow w^{4} \rightarrow w^{8} \ldots W^{b}=H_{n-1}=D
$$

Time complexity:- mum of $\#$ op $=g_{g}$
$\left.\begin{array}{l}\text { Complexity of }(A \notin B)=O\left(n^{3}\right)\end{array}\right\} O\left(n^{3} \lg n\right)$
Spare complexity:- $O\left(n^{2}\right)$

Ex: Extend to
How to obtain shortest paths

Predecessor matrix $\mathrm{P}[\mathrm{u}, \mathrm{v}]=$ predecessor of v on some shortest path on $\mathrm{u} \sim \mathrm{v}$
Ex: Compute P from D Compute shortest path from $u \sim$ using P ? $v<P[\underbrace{u}, v]<P[u, \omega] \leftarrow \cdots u$
APSP algol $\left(O\left(n^{4}\right)\right) \quad P[u, v, k]=$ pred of v on some sp, on u nos using at most Kedge

